Structural materials are required to withstand a variety of applied loads in use. Understanding how these materials respond to applied loads is vital for informed materials selection. Here you can investigate how materials behave under tensile loading (loads applied along the length of a material to cause stretching).
This is only the LITE version, the full version (wtih all materials) is availabe via log-in.
Press GO to launch the experiment!
What is ‘Tensile Testing’?
The ‘tensile’ properties of a material describe its most basic mechanical behaviour – how much does a material stretch when it is pulled and how much of the stretching is permanent? ‘Tensile Testing’ is the process of measuring a material’s tensile properties.
Why are tensile properties important?
Understanding of tensile properties is vital for any application that uses materials structurally, i.e. to withstand or apply force. The range of uses this covers is enormous. Strong and stiff structures are used in vehicles (cycles, cars, trains, aeroplanes, spacecraft), bridges and buildings, sports equipment and bio-implants (e.g. hip joint replacements). Flexible materials are also used in many of these applications. Thin but robust materials are used in touchscreens. Hard materials are used in machines and robots that process and shape other materials and as durable coatings that improve the performance and lifetime of aerospace and bio-implant components. Elastic materials can be stretched enormously before any permanent change is made and are used in springs and high performance fabrics. And it’s not just how a component is used – many manufacturing processes involve changing a component’s shape or response to applied forces, e.g. extrusion to make tubes, beams and bottles; drawing to make springs or wires; or forging and rolling to shape and harden metals.
Use this experiment to find out more!
Download the file below for the quick guide for the Tensile Testing experiment (requires login) or follow these brief instructions:
To select a sample:
To set the strain increment:
To apply strain to samples:
Download the file below for full instructions for the Tensile Testing experiment (requires login).
Structural materials are required to withstand a variety of applied loads in use. Understanding how these materials respond to the applied loads is vital for informed materials selection. Here we investigate how materials behave under tensile loading (loads applied along the length of a material to cause stretching).
The Tensile Test experiment allows a number of mechanical tests to be performed on materials, including:
Download the file below for activities for the Tensile Testing experiment (requires login).
(Available as separate downloads or all activities)
*NEW* Now also available in editable Microsoft Word format
We have also provided a spreadsheet file to allow you to enter your SAMPLE WIDTH, STRAIN and APPLIED LOAD data and obtain stress-strain plots. (HINT: to investigate the general form of stress-strain curves with younger students, use a default sample width of, say, 7 mm)
Download: Tensile testing - Quick Activities Download: Tensile testing - Activity 1 - Elastic Deformation Download: Tensile testing - Activity 2 - Plastic Deformation Download: Tensile testing - Activity 3 - Fracture Download: Tensile Testing - Spreadsheet0 Download: Tensile testing - All Activities PDF Download: Tensile testing - All Activities Word fWatch the video above and download the file below for the background science behind the Tensile Testing experiment (requires log in).
Download: Tensile testing backgroundOhm's law is a fundamental equation that shows how voltage, electrical current and electrical resistance are related in simple conductors such as resistors. This experiments allows you to explore Ohm's law and how the coloured bands on resistors codes their resistance. In doing this you will also learn how to use a power supply and 'digital multimeters'.
Press GO to launch the experiment!
Ohm’s law
Voltage, current and resistance are the most fundamental quantities for describing the flow of electricity. Ohm’s law shows how these three quantities are related and so is a powerful way of understanding the basic nature of electricity.
This is relevant to vast areas of technology today, including national electricity grids, power generation, design of all electronic devices and all electronic circuits, heating, electrical safety and understanding of natural phenomena such as lightning. This experiment will allow you to explore Ohm’s law by making measurements of voltage, current and resistance.
Resistors
Resistors are the simplest and most commonly used electronic component and almost all electronic circuits contain them. They can be used to change the properties of any circuit they are part of, such as current flow, how voltage is distributed across components, the speed of a circuit, the amount of amplification from a circuit, the response of a sensor or the amount of electrical heating from a circuit.
The simplest resistors are made of a thin film or wound wire of carbon or metal. They usually have a series of coloured bands that represents both their target resistance value and how much the actual value might vary from this (the ‘tolerance’). This experiment lets you practise selecting the appropriate colour bands on a resistor to achieve a certain resistance value.
Digital Multimeters
Digital multimeters (DMMs) are versatile pieces of equipment commonly found in electronics, physics and engineering labs. In this experiment you’ll learn how to use a DMM to measure voltage, current and resistance. You’ll see this piece of equipment in many other FlashyScience experiments!
Use this experiment to find out more!
Download the file below for the quick guide for the Ohm's Law experiment (requires login) or follow these brief instructions:
To measure resistance:
To change the resistor:
To use voltage and current:
Download the file below for full instructions for the Ohm's Law experiment (requires log in).
Download the files below for activities for the Ohm's Law experiment (requires login).
(Available as separate downloads or all activities)
*NEW* Now also available in editable Microsoft Word format
Download the file below for the background science behind the Ohm's Law experiment (requires log in).
Gravity is a fundamental force in nature, without which we would not have galaxies, stars, the Earth, oceans, life on Earth... or golf.
This experiment allows you to measure the acceleration due to gravity by measuring the time taken for a ball to fall through different heights. You can choose between two ways of timing the free fall, and you can even travel through space to measure the strength of gravity on different objects of the Solar system!
Press GO to launch the experiment!
It is safe to say that gravity is important to us! Without gravity there would be no life on Earth and, in fact, without gravity, the Earth would never have existed.
Gravity is responsible for stars forming in the first place, keeping the Sun from exploding from the heat it generates, and for the structure of galaxies. It also keeps the Earth in orbit around the Sun, keeps our atmosphere and oceans in place and means we don’t float off into space. Gravity even allows plants to detect which way is ‘up’ so they send their roots and shoots in the right directions. You can see more at this NASA web page.
So, why does it matter that we know how strong gravity is?
Well, for lots of reasons.
The strength of gravity is essential to know in Civil Engineering projects such as design of
buildings and bridges so we can calculate the stresses materials are under.
Aircraft and space rocket designers must know the strength of gravity that must be overcome and satellite technology is based upon a certain strength of gravity to maintain orbits at particular heights above the Earth.
Hydroelectric power generation also relies on gravitational potential energy, either through energy ‘storage’ in dams or from the water flow or tides in rivers or oceans.
Our quality of life would be very different too. Most sports rely on gravity (we’re not counting chess as a sport here!) and gravity even keeps food in a saucepan while it cooks!
Use this experiment to find out more!
Download the file below for the quick guide for the Free-fall due to Gravity experiment (requires login) or follow these brief instructions:
Measured Earth’s gravity? Click on the poster to explore gravity elsewhere in the Solar System too!
Download the file below for full instructions for the Free-fall due to Gravity experiment (requires log in).
Download the files below for activities for the Free-fall due to Gravity experiment (requires login).
(Available as separate downloads or all activities)
*NEW* Now also available in editable Microsoft Word format
Download the file below for the background science behind the Free-fall due to Gravity experiment (requires log in).
Radioactive materials are used by us in lots of ways. This experiment allows you to explore alpha, beta and gamma radiation and how they are absorbed by various materials. You can also measure the change in radioactive signal with distance from the radiation source and even time travel to measure the halflife of radioactive decay for different elements!
Press GO to launch the experiment!
Radioactive elements (radionuclides or radioactive isotopes) produce high energy particles and are used in a huge range of applications. Most people know about nuclear power, which converts the energy of radiation from uranium-238 or plutonium-239 into heat and then electrical power, even in small-scale form for remote applications (e.g. spacecraft). There are far more widespread uses all around us though.
Radionuclides are used in many medicinal applications. They can be used as tracers to follow fluid flow inside the body by detecting the radionuclide emitted radiation (e.g. technetium-99, thallium-201, iodine-131 and sodium-24). Medical imaging can use radioactive elements that naturally collect in particular parts of the body and image the radioactive emission. For example, iodine-131 is used to image the thyroid and other isotopes can be used for other organs, such as bones, heart, liver and lungs. Larger doses of the radionuclides (e.g. cobalt-60) are used to create a targeted radiotherapy treatment of cancer in these organs. It is even possible to detect the presence of Heliobacter pylori (an unwanted bacterium that can be in stomachs) with a simple breath test that uses carbon-14.
You may have radioactive materials in your home, school or workplace. Smoke detectors use alpha radiation from americium-241 to ionise smoke particles for detection. Glow-in-the-dark inks on clocks, watches and emergency signs that convert radioactive particle energy from promethium-147 into light.
You may also have food that has been treated with radiation. Many foods (including tomatoes, mushrooms, berries, cereals, eggs, fish and some meat products) are irradiated with gamma rays from cobalt-60 to kill micro-organisms and improve the food’s shelf life (without making the food radioactive!). Similarly, gamma radiation from caesium-137 is used to sterilise medical products such as syringes, heart valves, surgical instruments and contact lens solutions.
Radioactive elements are used in industry too. For example, the absorption of different types of radiation mean it can be used to monitor the thickness of manufactured components and sheets. Radionuclides are also used for detecting leaks from pipes, the direction of underground pipes and waste dispersal in the environment. Radioactive sources are also used in industrial imaging, with the sample placed between the radiation source and a detector. Certain isotopes are used as chemicals in order to trace chemical reaction routes, e.g. carbon-14 in photosynthesis. Similar approaches are used in biology to test when proteins undergo important ‘phosphorylation’ reactions (using phosphorus-32) to learn when their function is activated by other proteins or small chemicals.
Radioactive elements can also be used for historical dating of objects, e.g. carbon-14 dating for estimating the age of organic matter and uranium-238 for rocks. Similarly, radioactive decay from vintage drinks such as wine can be used to prove their age, since radionuclides were released into the atmosphere by nuclear explosion tests after World War II and are present in all food and drink produced since then.
With so many uses, it’s no wonder that radioactive decay is an important aspect of science and engineering!
Use this experiment to find out more!
Download the file below for the quick guide for the Radioactivity experiment (requires login) or follow these brief instructions:
Select the radiation source:
Detecting radiation:
Changing the filter material and thickness:
Change the source-detector separation:
Time travel!
Download the file below for full instructions for the Radioactivity experiment (requires log in).
Download the file below for activities for the Radioactivity experiment (requires login).
(Available as separate downloads or all activities)
*NEW* Now also available in editable Microsoft Word format
Or see if you can do some of the following:
Download the file below for the background science behind the Radioactivity experiment (requires log in).
The electrical resistivity of a wire tells us how well the wire material conducts electricity. This is crucial information for any application that involves conducting electricity, including wind turbines, electric vehicles, household electrical goods and computers. Here you can measure the resistivity of wires of different materials and widths, and consider which would be best suited for conducting electricity.
Press GO to launch the experiment!
Electronic materials are crucial to our life today, and electrical ‘resistivity’ tells us how good or poor a material is at conducting electricity.
We use materials with low electrical resistivity to transmit electrical power from generators, across grid distribution networks, and to homes and workplaces for use. Designers of electrical devices rely on knowing the resistivity of wire used in order to calculate the resistance of components.
These devices range in size from enormous machines such as wind turbines or industrial lifting equipment; motors or engines in electric vehicles and all-new electric aircraft; consumer products such as washing machines, hair dryers and ovens; and the nanoscale components within the computer chips found in smart devices, laptops, and mobile phones.
In fact, modern computing is based on controlling the resistivity of semiconductor materials in a type of transistor (known as ‘field effect transistors’ using ‘CMOS’ technology).
Measuring electrical resistivity helps us to understand the properties of materials, to monitor manufacturing processes, and to select the best material for an application.
Use this experiment to find out more!
Download the file below for the quick guide for the Resistivity of a Wire experiment (requires login) or follow these brief instructions:
Download the file below for full instructions for the Resistivity of a Wire experiment (requires log in).
Download the file below for activities for the Resitivity of a Wire experiment (requires login).
(Available as separate downloads or all activities)
*NEW* Now also available in editable Microsoft Word format
Download the file below for the background science behind the Resitivity of a Wire experiment (requires log in).
Use either a prism or a hemicylinder of material to discover how light interacts with materials when it pass through of reflects off of materials. You will be able to measure the refraction index of materials along with the angle requried for total internal reflection.
Press GO to launch the experiment!
We use light in all sorts of ways. You are probably using a screen that emits light to read these words now and might be in a room that is lit by artificial light from a lightbulb.
Use this experiment to find out more!
This experiment deals with how light interacts with transparent materials. You can explore the nature of the refraction of light by taking measurements using four different materials and applying Snell's law. Refraction is an important optical effect. The fact that you can read this is down to how transparent materials in your eyes refract light to create images. If you wear glasses or contact lenses, you are relying on refraction even more!
In fact, there are lots of types of imaging systems that work by refracting light. These include a wide variety of microscopes and telescopes for making the very small or very large parts of our world and universe visible to us. These work by refracting light through lenses or by reflecting light from mirrors, or a combination of both.
Light scanners use light refraction or reflection in all sorts of applications, from barcode readers to laser display systems to laser machining tools used to process materials.
This experiment also allows you to investigate total internal reflection with the various materials provided. Vast amounts of information are sent worldwide every minute of every day using packets of light travelling down transparent fibre optic cables. This vital technology depends on total internal reflection of light at the interface of two types of material to direct the light with minimal loss of intensity. The future might see super-fast all-optical computers that use light to process information.
The way light interacts with a material can also tell us a lot about the material. Lots of scientific techniques use light to probe the nature of all sorts of materials.
The FlashyScience Reflection & Refraction of Light experiment allows you to learn about the way light behaves at surfaces and through transparent materials – this is a great starting point to understanding many of the ways we use light in the world around us!
Download the file below for the quick guide for the Reflection & Refraction of Light (Advanced) experiment (requires login).
Download the file below for full instructions for the Reflection & Refraction of Light (Advanced) experiment (requires login).
Download the files below for activities and associated worksheets for the Reflection & Refraction of Light (Advanced) experiment (requires login).
(Available as separate downloads or all activities/all worksheets)
*NEW* Now also available in editable Microsoft Word format
Download the file below for the background science behind the Reflection & Refraction of Light (Advanced) experiment (requires login).
Measuring the Young Modulus of a piece of wire made from steel, aluminum, copper or nylon. NOTE: This is a beta version that is currently being tested but feedback is very welcome!
Simple Harmonic Motion using a Pendulum - early release.
Simple harmonic motion (SHM) is a type of oscillating motion. It is used to model many situations in real life where a mass oscillates about an equilibrium point.
Early release - while the experiment is fully functional not all documents and supporting material is available just yet.
Simple harmonic motion can be seen all around us in objects and applications that improve our lives. However, it is also seen in the fundamental behaviour of molecules and materials, although this usually occurs at frequencies and length scales that require scientific instruments for us to observe them.
A child on a park swing will just be enjoying the ride, probably unaware that the swing’s movement is an example of simple harmonic motion, or SHM.
The same child might go on a larger ride, such as a Pirate Ship, at an amusement park. The ride’s designers will have used simple harmonic motion principles to calculate the frequency of the Pirate Ship, its maximum speed, and the forces involved, and use this to specify the construction materials and the electric motor that should be used.
Musical instruments often use simple harmonic motion. For example, the strings of stringed instruments such as a guitar or violin vibrate back-and-forth in a way that obeys simple harmonic motion.
Our understanding and measurement of time has been affected by simple harmonic motion. Pendulum clocks use the regular, simple harmonic motion of a pendulum mass to determine how fast the clock hands move, while this is done in quartz clocks and watches using the simple harmonic vibrations of a quartz crystal.
Shock absorbers, including those in cars, use springs in an oil that move with ‘damped’ harmonic motion to reduce vibrations and give the vehicle passengers a smoother ride.
Simple harmonic motion is important for hearing too. The cochlea in our ears is lined with hairs called stereocilia just 0.01 – 0.05 mm in length. These hairs vibrate when particular frequencies of sound are transmitted through the cochlea and give us our sense of hearing.
The electronic bonds that hold atoms together in molecules and solids create forces that try to return atoms to equilibrium positions. This results in simple harmonic motion, even at this atomic scale.
Different molecules have atoms and groups of atoms with different masses bonded in different ways (e.g., single or double bonds) that can also vibrate in different ways (e.g. three atoms bonded along a single axis can all vibrate along the axis or laterally to it). This means that molecules have different sets of vibrational frequencies that absorb light of the same frequencies, usually infrared light. Forms of infrared spectroscopy are therefore used to find what molecules are in a measured sample.
These vibrations are one of the main ways molecules and solids absorb thermal energy, and increasing the temperature of molecules or solids will increase the amplitude of their simple harmonic vibrations.
There are also some sophisticated scientific effects that show simple harmonic motion. One example is electrons at the surface of some metals. A sea of conduction electrons can form, which then acts as a single object. This sea of electrons, known as a surface plasmon, can be made to oscillate across the metal using light. The simple harmonic motion of surface plasmons is currently being developed in research labs to create high sensitivity detectors (e.g., of molecules, proteins, and bacteria), computer chips thousands of times faster than those we have today, and even improved makeup!
Download the file below for the quick guide for the Simple harmonic motion (Pendulum) experiment (requires login).
Download the file below for full instructions for the Simple harmonic motion (pendulum) experiment (requires log in).
Download the file below for the background science behind the Simple harmonic motion (pendulum) experiment (requires log in).