The electrical resistivity of a wire tells us how well the wire material conducts electricity. This is crucial information for any application that involves conducting electricity, including wind turbines, electric vehicles, household electrical goods and computers. Here you can measure the resistivity of wires of different materials and widths, and consider which would be best suited for conducting electricity.
Press GO to launch the experiment!
Electronic materials are crucial to our life today, and electrical ‘resistivity’ tells us how good or poor a material is at conducting electricity.
We use materials with low electrical resistivity to transmit electrical power from generators, across grid distribution networks, and to homes and workplaces for use. Designers of electrical devices rely on knowing the resistivity of wire used in order to calculate the resistance of components.
These devices range in size from enormous machines such as wind turbines or industrial lifting equipment; motors or engines in electric vehicles and all-new electric aircraft; consumer products such as washing machines, hair dryers and ovens; and the nanoscale components within the computer chips found in smart devices, laptops, and mobile phones.
In fact, modern computing is based on controlling the resistivity of semiconductor materials in a type of transistor (known as ‘field effect transistors’ using ‘CMOS’ technology).
Measuring electrical resistivity helps us to understand the properties of materials, to monitor manufacturing processes, and to select the best material for an application.
Click on the link below to download the Quick Guide for using the Resistivity experiment. Or follow the brief instructions here:
Click on the link to download a pdf of the Instructions for operating the Resistivity experiment
Click on the link below to download a pdf of example questions for the Resistivity experiment.
Click on the link to download the Background pdf for the Resistivity experiment.
Hooke's law describes how springs respond to having forces applied. This experiment allows you to apply force using weights and measure how springs of different stiffness extend in response. You can calculate the stored elastic potential energy in the springs and even go to different parts of the Solar System to see how changing the strength of gravity changes the weight applied to the springs!
Press GO to launch the experiment!
Stretching – the truth!
You may wonder why we study springs and why questions about stretching springs appear on exams. Sure, springs are used in the world, but are they really so important? Why is it important to know how springs stretch when they are pulled?
Well, first, springs are incredibly useful. When made from elastic materials, such as most metals, springs stretch when pulled and return to their original size when released. They can also be compressed and, again, return to their original size when released. The stretching or compression stores energy that is then returned when the spring is released. This energy storage and return is the key reason springs are useful. Springs use this capability in all sorts of applications, including in high tech areas such as automotive, industrial tools and robotics, to more everyday items such as trampolines, mattresses, children’s play equipment, door handles and retractable pens.
The second reason is that the way that springs respond to force being applied to them (i.e. being pulled or mass added to one end of them) is identical to how materials in general behave. If materials are pulled, then they stretch. The coiled shape of a spring, though, means that the ends tend to move large distances compared to a regular shape of the same material (e.g. a simple rod). This means that studying what happens to springs when they are pulled allows simple measurements to be performed that give us understanding of how all materials behave when they are pulled. Materials behave this way in any application where they have force applied to them, e.g. in construction, vehicles, heart valves, body implants, plants, rocks, furniture, tools, footwear – the list goes on and on. And don’t forget this includes your body too!
Use this experiment to find out more!
Follow these instructions or download the Quick Guide via the link (requires log in):
5. To change to a different part of the Solar System:
6. Click the Information button to see the controls.
Use this experiment to:
Download the full Instructions for the Hooke's Law experiment from the link (requires log in)
There are lots of activities to do with the Hooke's Law experiment. You can choose these from one of our Activities, with step-by-step instructions, and record your work on a Worksheet, or use the shorter descriptions in our Questions. Download all of these from from the links (requires log in)
Download the file from the link below to see the full scientific Background to the Hooke's law experiment (requires log in)
There are lots of ways that we use materials that see them change temperature. Some examples include heating systems in buildings (especially storage heaters), simple household appliances such as an iron or an oven, combustion engines in cars, jet engines in aircraft, high speed machines such as drills, and industrial furnaces; however, examples also include applications where the temperature is reduced, for example in refrigerators, freezers and heat sinks, which are used to help cool another component.
A change in a material’s temperature will also result in a change in its heat energy. Different materials, however, will have a different change in heat energy for a given change in temperature.
The materials property we use to show this difference is called specific heat capacity. This property is key to allowing us to understand how components will perform in thermal applications and help us to choose the most appropriate material. If you go to study Physics or Engineering at university you will probably also learn how specific heat capacity values depend on a material’s types of atom, atomic bonding and electrical properties.
Download the attachment to see the one-page quick guide (requires login)
Download the attached file to see the full instructions for this experiment (requires login)
There are two files to download here, both requiring a login first.
The 'Activities' download gives full step-by-step instructions for four activities with this experiment
The 'Worksheets' download provides worksheets for these four activities that can be printed out and written on directly.
Download the attached file to see the scientific background to this experiment (requires login)